Write an equation for the parabola with the given vertex and point calculator

High School Statutory Authority:

Write an equation for the parabola with the given vertex and point calculator

This is primarily a list of Greatest Mathematicians of the Past, but I use birth as an arbitrary cutoff, and two of the "Top " are still alive now. Click here for a longer List of including many more 20th-century mathematicians. Click for a discussion of certain omissions.

Please send me e-mail if you believe there's a major flaw in my rankings or an error in any of the biographies. Obviously the relative ranks of, say Fibonacci and Ramanujan, will never satisfy everyone since the reasons for their "greatness" are different. I'm sure I've overlooked great mathematicians who obviously belong on this list.

Math Questions . . . Math Answers . . .

Please e-mail and tell me! Following are the top mathematicians in chronological birth-year order. By the way, the ranking assigned to a mathematician will appear if you place the cursor atop the name at the top of his mini-bio. Earliest mathematicians Little is known of the earliest mathematics, but the famous Ishango Bone from Early Stone-Age Africa has tally marks suggesting arithmetic.

The markings include six prime numbers 5, 7, 11, 13, 17, 19 in order, though this is probably coincidence.

Table of Contents

The advanced artifacts of Egypt's Old Kingdom and the Indus-Harrapa civilization imply strong mathematical skill, but the first written evidence of advanced arithmetic dates from Sumeria, where year old clay tablets show multiplication and division problems; the first abacus may be about this old.

By years ago, Mesopotamian tablets show tables of squares, cubes, reciprocals, and even logarithms and trig functions, using a primitive place-value system in base 60, not Babylonians were familiar with the Pythagorean Theorem, solutions to quadratic equations, even cubic equations though they didn't have a general solution for theseand eventually even developed methods to estimate terms for compound interest.

The Greeks borrowed from Babylonian mathematics, which was the most advanced of any before the Greeks; but there is no ancient Babylonian mathematician whose name is known. Also at least years ago, the Egyptian scribe Ahmes produced a famous manuscript now called the Rhind Papyrusitself a copy of a late Middle Kingdom text.

It showed simple algebra methods and included a table giving optimal expressions using Egyptian fractions. Today, Egyptian fractions lead to challenging number theory problems with no practical applications, but they may have had practical value for the Egyptians.

The Pyramids demonstrate that Egyptians were adept at geometry, though little written evidence survives. Babylon was much more advanced than Egypt at arithmetic and algebra; this was probably due, at least in part, to their place-value system. But although their base system survives e.

The Vedics understood relationships between geometry and arithmetic, developed astronomy, astrology, calendars, and used mathematical forms in some religious rituals. The earliest mathematician to whom definite teachings can be ascribed was Lagadha, who apparently lived about BC and used geometry and elementary trigonometry for his astronomy.

Apastambha did work summarized below; other early Vedic mathematicians solved quadratic and simultaneous equations. Other early cultures also developed some mathematics. The ancient Mayans apparently had a place-value system with zero before the Hindus did; Aztec architecture implies practical geometry skills.

Ancient China certainly developed mathematics, in fact the first known proof of the Pythagorean Theorem is found in a Chinese book Zhoubi Suanjing which might have been written about BC. Thales may have invented the notion of compass-and-straightedge construction.

Several fundamental theorems about triangles are attributed to Thales, including the law of similar triangles which Thales used famously to calculate the height of the Great Pyramid and "Thales' Theorem" itself: The other "theorems" were probably more like well-known axioms, but Thales proved Thales' Theorem using two of his other theorems; it is said that Thales then sacrificed an ox to celebrate what might have been the first mathematical proof in Greece.

Thales was also an astronomer; he invented the day calendar, introduced the use of Ursa Minor for finding North, invented the gnomonic map projection the first of many methods known today to map part of the surface of a sphere to a plane, and is the first person believed to have correctly predicted a solar eclipse.

His theories of physics would seem quaint today, but he seems to have been the first to describe magnetism and static electricity. Aristotle said, "To Thales the primary question was not what do we know, but how do we know it.

It is said he once leased all available olive presses after predicting a good olive season; he did this not for the wealth itself, but as a demonstration of the use of intelligence in business. Thales' writings have not survived and are known only second-hand. Since his famous theorems of geometry were probably already known in ancient Babylon, his importance derives from imparting the notions of mathematical proof and the scientific method to ancient Greeks.

Thales' student and successor was Anaximander, who is often called the "First Scientist" instead of Thales: Anaximander is famous for astronomy, cartography and sundials, and also enunciated a theory of evolution, that land species somehow developed from primordial fish!

Footnotes: Finding Quadratic Equation from Points or a Graph Quadratic applications are very helpful in solving several types of word problems other than the bouquet throwing problemespecially where optimization is involved. Again, we can use the vertex to find the maximum or the minimum values, and roots to find solutions to quadratics.
Graphing on the go? There's an app for that! To find the domain and range, make a t-chart: Notice that when we have trig arguments in both equations, we can sometimes use a Pythagorean Trig Identity to eliminate the parameter and we end up with a Conic:

Anaximander's most famous student, in turn, was Pythagoras. The methods of Thales and Pythagoras led to the schools of Plato and Euclid, an intellectual blossoming unequaled until Europe's Renaissance. For this reason Thales may belong on this list for his historical importance despite his relative lack of mathematical achievements.

Apastambha ca BC India The Dharmasutra composed by Apastambha contains mensuration techniques, novel geometric construction techniques, a method of elementary algebra, and what may be an early proof of the Pythagorean Theorem.

Welcome to She Loves Math!

Apastambha built on the work of earlier Vedic scholars, especially Baudhayana, as well as Harappan and probably Mesopotamian mathematicians.

His notation and proofs were primitive, and there is little certainty about his life.Learn the Pythagorean Theorem. The Pythagorean Theorem describes the relationship between the sides of a right triangle.

It states that for any right triangle with sides of length a and b, and hypotenuse of length c, a 2 + b 2 = c 2. Get our free online math tools for graphing, geometry, 3D, and more! Ask Math Questions you want answered Share your favorite Solution to a math problem Share a Story about your experiences with Math which could inspire or help others.

The function f(x) = ax 2 + bx + c is the quadratic function. The graph of any quadratic function has the same general shape, which is called a regardbouddhiste.com location and size of the parabola, and how it opens, depend on the values of a, b, and regardbouddhiste.com shown in Figure 1, if a > 0, the parabola has a minimum point and opens regardbouddhiste.com a parabola has a maximum point and opens downward.

3 Easy Ways to Find the Length of the Hypotenuse - wikiHow

This calculator will find either the equation of the parabola from the given parameters or the axis of symmetry, focus, vertex, directrix, focal parameter, x-intercepts, y-intercepts of the entered parabola. In physics and geometry, a catenary (US: / ˈ k æ t ən ɛr i /, UK: / k ə ˈ t iː n ər i /) is the curve that an idealized hanging chain or cable assumes under its own weight when supported only at its ends..

The catenary curve has a U-like shape, superficially similar in appearance to a parabolic arch, but it is not a parabola.. The curve appears in the .

write an equation for the parabola with the given vertex and point calculator
Math-History Timeline